
Object Based Computing: A NextStep Tutorial and Cookbook -Version 1.5 - DGM

Chapter 4 - Encapsulation and Inheritance

Chapter 4
Encapsulation and
Inheritance

We have just taken you on a whirl-wind tour of creating your first object. We will now take a

step back and take a look at the details of object creation.

The late 1980’s saw the migration of programs traditionally found on large mainframe

systems to personal computer platforms - word processors, data bases and spread sheets

being the most popular. As these programs became more popular, new software companies

began entering the PC software market with less expensive and more powerful versions of

the standard programs. To be competitive software had to be feature-rich and still run on

systems with severe memory limitations. As a result, the marketing divisions of software

firms started to promise new versions of products with a large number of new features but

which would still run on computer systems with very little memory. Software developers

found that they couldn’t deliver the programs on time. The software had so many features

that it was called "bigware" and it took so long to develop that it was later known as

"lateware".1

What software developers were finding was that as they tried to add new features they would

introduce new bugs. And trying to fix those bugs introduced additional bugs. The result was

a drastic decline in software productivity as the the size of a project grew (see Figure 4-1)

1Newsweek April 1989

 Page 4-1 Sun Jun 20 1993 16:06:41 EDT

Object Based Computing: A NextStep Tutorial and Cookbook -Version 1.5 - DGM

Chapter 4 - Encapsulation and Inheritance

Productivity

New Features Added

Figure 4-1 Dropping Productivity as Project Grows

To solve this problem we must look at the ways we create programs and integrate them

together to create a software system. We must not look at the superficial features of software

productivity tools but at the very foundations of the way we create software.

Researchers have been studying software design techniques for many years. Much of the

pioneering research done at Xerox Palo Alto Research Center with totally new programming

environments such as SmallTalk has shown that there are radically different approaches to

creating software that challenge traditional methods currently being taught. One family of

techniques gained a great deal of popularity in the mid-eighties are now currently referred to

as the principals of object oriented programming. We will introduce these techniques to you

in this and later chapters. Our first techniques will cover the creation of new objects.

Encapsulation

Encapsulation has various names. Computer scientists often refer to it as "information

hiding" or "data abstraction". In general, these terms imply grouping data and the

procedures to access that data together in the same unit. We call this unit an object. We

also set down some rules about how you can access the data in the object. One rule is that if

we develop and object, you only let people see or change your internal data using the

procedures we provide with that object. This means the creator of the object has the ultimate

control of how users access this object and change the internal states of the object. The

creator of an object is responsible for creating and testing all of the ways a user will read the

state of on object as well as checking that inputs to change the state of an object are valid.

The creator of an object (rather then the user of an object) has complete responsibility of

completeness and correctness of all access methods.

 Page 4-2 Sun Jun 20 1993 16:06:41 EDT

Object Based Computing: A NextStep Tutorial and Cookbook -Version 1.5 - DGM

Chapter 4 - Encapsulation and Inheritance

When we try to create a mental image of the objects, we might find it helpful to imagine a box

with a thick brick wall around it as in Figure 4-2.

Method

Method

Object

Internal
State
Variables

Brick Wall

Figure 4-2: A suggested mental image of an object.

Inside the box we have the data structures such as integers, floating point numbers, strings,

and other more complicated structures such as linked lists or directed graphs. We call these

the instance variables. They hold the state of the object. We use the word instance

because there is a different group of these variables associated with each instance of the

object. The only way to read or write the values of these variables is to use one of the

access methods provided with each object. We often just abbreviate this by just using the

word "method" to refer to the way a program gets access to the structures inside an object.

Benefits of Encapsulation

Once we start encapsulating your data you will find that you can quickly control the data types

that are passed to your objects. Since the NextStep Objective C compiler has type checking

built into its messaging you will always be able to catch data type mismatches at early in the

design process when it is much easier to isolate. This will dramatically cut down time spent

with the debugger and greatly enhance the programs final reliability.

Once we define the set of messages that an object can receive we are then fixing the

interface to that object. If, at a later time, you find another more efficient data structure we

would like to use inside the object we can change it internally and not effect the interface.

This means that we can make updates without affecting the other components of our system.

After we have an object that performs some specific function, we can then create a symbolic

 Page 4-3 Sun Jun 20 1993 16:06:41 EDT

Object Based Computing: A NextStep Tutorial and Cookbook -Version 1.5 - DGM

Chapter 4 - Encapsulation and Inheritance

abstraction of that object using a "view" of it on the screen. The connections to the object can

then be done with NextStep’s connection based programming tools.

Views of Subroutine Libraries

By creating these views, a user can now graphically manipulate the object and integrate it

with other objects. When users make a connection to one of our objects, NextStep will ask

them which of the access methods they would like to use. This means that non-programmers

can start using tools that were previously only accessible to a very small group of

experienced people. And since it is up to the creators of the objects to validate the

correctness of the access methods, a much larger group of people will be able to use the

objects without the traditional debugging efforts.

Imagine what the world would be like if the only people who could drive a car were the people

who could assemble an internal combustion engine. We certainly wouldn’t have the traffic

problems we have today. But what we have in cars is a simplified user interface: a steering

wheel, a break and a gas peddle. object based computing platforms give us these same

advantages: easy to use interfaces to traditional subroutine libraries. This helps both the

creators and users of a sub-routine library system. It helps the creators because their

potential user base goes up dramatically. This help users because the amount of training

they have to go through drops dramatically. We will see that the number of people who are

creating applications with these graphic subroutine libraries will grow exponentially for the

next several years.

Before object based computing we had to use a manual to find out all the arguments to a

subroutine, declare all the arguments with the correct data types, pass these in the correct

order to subroutines and then if you get any of them wrong, start a learning how to use the

debugger. Now we will just point to a source object, drag a line to a destination object and

click on the message to be sent. Correctness is enforced by the user interface.

Inheritance

Before we discuss inheritance, I want to make the distinction between a instance of an object

and a class of objects. The characteristics of class of objects, like a Ford Truck, is

determined by the factory which creates the trucks. If I had a Ford Truck, I would have an

instance of the truck. Similarly we have class of objects which create new instances of

objects. And these are naturally called factory objects .

Our second technique is Inheritance. Whenever we create a new class of objects, we always

create it relative to other objects classes. These classes then fit together into a "tree" of object

classes.

Sample Inheritance Tree

The structure is very similar to an evolutionary tree (see figure 4-3).

 Page 4-4 Sun Jun 20 1993 16:06:41 EDT

Object Based Computing: A NextStep Tutorial and Cookbook -Version 1.5 - DGM

Chapter 4 - Encapsulation and Inheritance

Mammals

Humans

Students Teachers

John Sue Dan Peg

Dolphins

Flipper

Figure 4-3: A sample inheritance tree

The most general class is at the top, and each class that has a group of common

characteristics would be a lower class. An important point here is that you can create an

instance from any level in the tree. And when you think of the difference between an

instance of an object and a class of object, remember that are as different as a car and a

factory that produces cars. This can be difficult for beginners using Interface Builder because

both classes and instances are represented by small windows that are very close together

and look similar. Both classes and instances of objects can be changed. Changing the

factory that produces cars could change some aspect of every car produced by that factory.

But changing one single car would not have a direct effect on all other cars of its class.

We will also use some new terminology to describe the relationship between classes. In the

example above, we would say that Humans are a super-class of Students and that Humans

are a sub-class of mammals.

When we create a new class, we inherit all the instance variables as well as methods defined

in its super-class. It in turn inherits all the instances and methods of all the super-classes

above it. This is one of the principal ways that we re-use programs in object oriented

programming. We find the object in an inheritance tree that most closely matches our

problem and make extensions to it from there. There are ways to create new structures as

well as change existing structures to meet our needs.

Let us now take a close look at the inheritance tree for the NextStep Application Kit. This is a

tool-kit of objects that we can use to build applications. The structure for this tree is given is

figure 4-4.

 Page 4-5 Sun Jun 20 1993 16:06:41 EDT

Object Based Computing: A NextStep Tutorial and Cookbook -Version 1.5 - DGM

Chapter 4 - Encapsulation and Inheritance

SelectionCell

Object

ActionCell

ButtonCell

MenuCell

Responder

Application

View

Box Text ScrollView

SavePanel FontPanel PrintPanel ChoosePrinter

OpenPanel

Control

Matrix Slider Scroller

Form

Window

Panel

TextFieldCell SliderCell

ButtonTextField

Speaker Listener

FormCell

Pasteboard

Cell

Bitmap

Cursor

Font FontManager PrintInfo

Menu

PopUpList

PageLayout

Figure 4-4: Application Kit Inheritance Hierarchy

Understanding the structure of the application kit is necessary if we are to be able to use the

application kit and extend the user interface objects to meet our needs.

At the top of the structure we see a box titled "Object". This is the most generic object in the

tree. It has the fewest specialized characteristics of any of the Application Kit objects. Any

characteristic of the object class will be shared with all other appkit objects. Directly below

the object class is the Responder class. This consists of all objects that can respond to user

generated events such as pressing the mouse and typing on the keyboard. To the lower right

of the Responder is the View class. All objects that are on the screen are a subclass of the

View class. Below the View class is the Control class. All classes which are sub-classes of

the Control will respond to events by sending message directly to other objects. They can

serve as controller inputs to our custom objects. One example of a control is the Button

class. If we take a closer look at the button class we will see that most of the characteristics

of the Button class are not created in the object itself but arise from its location in the

inheritance tree. Lets take a closer look at the documentation NeXT provides about the

Button class. It can be found in the following path of the NeXT on-line documentation (see

figure 5)

 Page 4-6 Sun Jun 20 1993 16:06:41 EDT

Object Based Computing: A NextStep Tutorial and Cookbook -Version 1.5 - DGM

Chapter 4 - Encapsulation and Inheritance

(from /NextLibrary/Documentation/NeXT/SysRefMan/21ClassSpecs/Appkit/Button.wn)

Button

INHERITS FROM Control : View : Responder : Object

INSTANCE VARIABLES

Inherited from Object struct _SHARED

*isa;

Inherited from Responder id

nextResponder;

Inherited from View NXRect

frame; NXRect

bounds; id

superview; id

subviews; id

window; struct __vFlags

vFlags;

Inherited from Control int

tag; id

cell; struct _conFlags

conFlags;

Declared in Button (none)

Figure 4-5: Class specification for the Button Class

The first line of the specification sheet reads:

INHERITS FROM Control : View : Responder : Object

This shows you the direct ancestors of the Button class. Below that we have the instance

variables for each of these levels. The mental picture we create for the Button class might

look something like figure 6.

 Page 4-7 Sun Jun 20 1993 16:06:41 EDT

Object Based Computing: A NextStep Tutorial and Cookbook -Version 1.5 - DGM

Chapter 4 - Encapsulation and Inheritance

Object isa

Responder nextResponder

View

frame

bounds

superview

subviews

window

vFlags

tag

cell

conFlags
Control

Button (none)

Figure 4-6: Button Inheritance Hierarchy

If we create a button of our own that needed to know the bounds of the button, we would access the

bounds in our own button as the variable "bounds". The bounds would actually come from the state

variable of the View class. Information such as bounds is used over and over again every time we

manipulate any on-screen objects. By re-using this code we increase our productivity and encourage

re-use rather then re-invention.

Exercises

1. Bring up Interface Builder and double click the Class Editor window by double-clicking on the

"Classes" tool-kit icon in the lower left window. Compare this with the Inheritance structure in Figure

4-5. What happens when you try to use the "Instantiate" selection under the pop-up list labeled

"Operations". Try instantiating an Object. Why can’t you instantiate a View? Try sub-classing a View

and call it MyView. If you drag a customView from the palette and then inspect its attributes what do

you see? Can you make the custom view an instance of the MyView class.

2. What are some sample inheritance structures you might create? What would an inheritance

structure for banking objects such as saving accounts, checking accounts, and banking transactions

look like? What fields would they have in common? What fields would be unique? What would an

inheritance structure for electrical components like wires, resistors, capacitors and transistors look

like?

 Page 4-8 Sun Jun 20 1993 16:06:41 EDT

